

2150 LAKE SHORE BOULEVARD WEST PROPOSED MIXED-USE DEVELOPMENT TORONTO, ONTARIO

Urban Transportation Considerations Official Plan Amendment, Zoning By-law Amendment, and Draft Plan of Subdivision Application Resubmission Appendix J to Appendix K

Prepared For: FCR (Park Lawn) Corporation 2253213 Ontario Limited

February 2021

APPENDIX J: Microsimulation Modelling and Assessment of Future Loop Road TTC Streetcar Operations

2150 LAKESHORE

1

Assessment of Future Loop Rd & Parklawn Station TTC Streetcar Operations

Vissim Microsimulation Modelling Exercise

Updated Technical Documentation, Results & Recommendations

Originally Submitted on October 22nd, 2020 Updated and Re-Submitted on January 18th, 2021

Overview

- 1) Modelling Context & Background Information
- 2) Alternative Scenarios & Model Parameters
- 3) Transit Signal Timing & Priority Strategy Basics
- 4) Analysis Results & Conclusions

Appendix A: Transit Signal Timing & Priority Strategy – Details Appendix B: Model Files & Detailed Simulation Results

1) Modelling Context & Background Information

- Multi-Resolution (Macro/Meso/Micro) Modelling Process
- Vissim Model Used in BA Group Analysis

Modelling Process

- Multi-resolution (macro/meso/micro) modelling process conducted in conjunction with the City of Toronto, AECOM and BA Group
- Takes into account population/employment growth and planned infrastructure improvements (e.g. new GO train station) at both the regional and local levels

Current Model

Model used by BA Group to evaluate streetcar operations and test different alternative scenarios is a *Vissim* microscopic (local) model derived from the ongoing multiresolution (macro/meso/micro) modelling exercise conducted in collaboration with the City of Toronto and AECOM

Some model characteristics:

- Includes 2041 traffic projections (background traffic), from City's modelling, including new Parklawn GO station
- Includes 2041 Christie's site traffic
- Weekday morning (AM) peak period only

2) Alternative Scenarios & Model Parameters

- Alternative Scenarios & Location of Traffic Signals
- Transit Routes & Model Travel Time Segments
- Parklawn Station Platforms | Transit Vehicle Dwell Time
- Parklawn Station Platforms | Boarding & Alighting Operations
- Summary of Model Parameters

Alternative Scenarios & Location of Traffic Signals on Loop Rd

Scenario 1

Uni-Directional (ZBA plan)

Scenario 2 Bi-Directional East 2 Signals along Loop Rd

Transit Routes & Model Travel Time Segments

Weekday Morning (AM) Peak Hour	Scenario 1 Uni-Directional	Scenario 2 Bi-Directional East
501 Queen EB Long Branch to Church		E CONTRACTOR
504 King Parklawn to Broadview		
501 Queen WB Church to Long Branch		

- Figures indicate the locations of start (1) and end (2) travel time markers, as coded in *Vissim* model
- All travel time segments begin upstream of first Lakeshore/Loop Rd intersection, include entirety of Loop Rd & Parklawn Station and end downstream of second Lakeshore/Loop Rd intersection
- Travel time start (1) and end (2) markers associated with specific transit routes share the same exact locations in all 3 model scenarios
- Travel time segments are broken down into delay due to a) Loop Rd & Parklawn Station and b) Lakeshore corridor & signalized intersections
- Vehicle travel speeds on Lakeshore Blvd far downstream/upstream of Loop Rd are equal in all scenarios (see page 21), said segments were therefore not included in transit vehicle operations travel times

Parklawn Station Platforms | Transit Vehicle Dwell Time

Typical Approach: Dwell Time Calculation

Transit vehicle dwell times at stops calculated based on:

- Hourly boarding volumes at stop
- Percentage of vehicle occupancy alighting at stop

Default calculation parameters:

- Alighting time: 0.5 secs/pass.
- Boarding time: 0.5 secs/pass.
- Door closure duration: 2 secs
- Clearance time: 12 secs

Limitations:

- Very little variability in resulting dwell times, majority of transit vehicle stop times fall within 1-2 secs of each other
- Approach leads to an unrealistic representation of transit vehicle stops at stations, much different from actual high variability conditions at existing stations (e.g. Dundas West, Bathurst, Broadview, Humber Loop, etc.)

Adopted Approach: Dwell Time Distributions

- Adopted approach incorporates higher dwell time variability and leads to a more realistic representation of transit vehicle stops at stations
- Based on normal dwell time distribution with a mean of 50 secs and a standard deviation of 6 secs.

 Same distribution used for all routes and platforms in all scenarios, distribution therefore does not impact relative differences in transit travel time results

Streetcar Dwell Time Distribution

Parklawn Station Platforms | Boarding & Alighting Operations

Two Passenger Boarding Platforms

- North platform serves the 504 King (Parklawn to Broadview) transit route
- South platform serves the 501 Queen (Long Branch to Church) transit route

Two Passenger Alighting Platforms

- Both platforms serve all three
 transit routes indiscriminately
- Downstream platform always prioritized, unless already in use by streetcar alighting passengers
- Upstream platform only used if downstream platform already in use by another transit vehicle

• Parklawn station platforms passenger boarding and alighting operations are modelled in the exact same way in both scenarios (unidirectional vs bidirectional east), and therefore do not impact relative differences in streetcar travel time results

Model	Parameters	– Summary

Traffic	Background Traffic	2041 area background traffic and site traffic derived from multi-resolution (macro/meso/micro) modelling process conducted with City of Toronto & AECOM		Accounts for proposed new Parklawn GO station & Relief Rd		
Volumes	Christie's Site Traffic			Based on latest development programme density and land use mix		
	Scenarios	Scenario 1 – Uni-Directional			Scenario 2 – Bi-Directional East	
Traffic Signals	Location of Traffic Signals along Loop Rd					
	Transit Route	501 EB Long Branch to Church & 501 WB Church to Long Branch	504 Pa	rklawn t	o Broadview	508 Lakeshore
Tropoit	Transit Service Rates	Headway: One vehicle every 10 mins Frequency: 6 vehicles per hour	Headway: C Frequenc	Dne veh y: 12 ve	icle every 5 mins hicles per hour	Headway: One vehicle every 20 mins Frequency: 3 vehicles per hour
Parameters	Parklawn Station Boarding & Alighting Operations	 Modelled using distribution due to unrealistically small variation of dwell times associated with default passenger-based metho Adopted dwell time distribution parameters: Mean: 50s, Standard Deviation: 6s, Upper Bound: 110s, Lower Bound: 0s 			ed with default passenger-based method Bound: 110s, Lower Bound: 0s	
	Transit Signal Timing & Priority Strategy	 No transit signal priority coded in models at Lake Shore Blvd / Loop Rd intersections (VisVAP required) Simple TSP coded with Vissim standard RBC at intersection of Loop Rd / Street C Detailed information provided in Section 3) Transit Signal Timing & Priority – Basics as well as in Appendix A: TSP – Details 				

3) Transit Signal Timing & Priority Strategy – Basics

- Two Types of Transit Signal Priority
- TSP Type 1 Proxy Intersection & Signal Timing Strategy
- TSP Type 2 Signal Timing Strategy

*** Appendix A: TSP Details should be read as a complement to this section ***

Transit Signal Priority Types

A this stage, no TSP included at the intersections of Lake Shore Blvd & Loop Rd (detailed *VisVA*P coding required)

Conservative, safe and standard signal timing plans coded at the two intersections of Lake Shore Blvd & Loop Rd. Simple TSP coded with *Vissim* RBC approach at Loop Rd / Street C.

Mid-Loop Rd Signals

 No transit-only phase, main traffic phases extendable/callable early

Type 1

Based on signal timing plans and transit priority strategies adopted at existing Toronto intersections

TSP Type 1Signal Timing Strategy

Signal at the intersection of Loop Rd and Street C

- "Typical" TSP, no transit-only phase
- Transit priority achieved with the extension/early-call of regular through-traffic phases on Loop Rd, actuation via check-in/check-out detectors
- Additional information provided in Appendix A

15

4) Analysis Results & Conclusions

- Transit Travel Times 501 Queen EB (Long Branch to Church)
- Transit Travel Times 504 King (Parklawn to Broadview)
- Transit Travel Times 501 Queen WB (Church to Long Branch)
- Private Vehicle Operations
- Conclusions

501 QUEEN

Long Branch to Church EB

Service Rate

Headway: One vehicle every 10m Frequency: 6 vehicles per hour

Simulation Sample Size

Number of Simulation Runs: 20 Number of Peak Hour Transit Vehicles per Simulation Run: 6 Total Sample Size: 120 Transit Vehicle Runs

Average Travel Times

	Uni-Directional	Bi-Directional East
Loop Rd and Station	3min 17sec	3min 32sec
Lake Shore intersections dwell time/travel time	3min 37sec	2min 42sec
Total	6min 54sec	6min 15sec

Additional Total Travel Time Distribution Metrics

	Uni-Directional	Bi-Directional East
85 th percentile	7min 58sec	6min 49sec
95 th percentile	8min 5sec	7min 20sec
Standard deviation	0min 58sec	0min 35sec
Longest	8min 34sec	7min 22sec
Shortest	4min 45sec	3min 55sec

504 KING Park Lawn to Broadview

Uni-Directional

East Bi-Directional

Service Rate

Headway: One vehicle every 5m Frequency: 12 vehicles per hour

Simulation Sample Size

Number of Simulation Runs: 20 Number of Peak Hour Transit Vehicles per Simulation Run: 12 Total Sample Size: 240 Transit Vehicle Runs

Average Travel Times

	Uni-Directional	Bi-Directional East
Loop Rd and Station	3min 7sec	3min 29sec
Lake Shore intersections dwell time/ travel time	3min 12sec	2min 33sec
Total	6min 20sec	6min 2sec

Additional Total Travel Time Distribution Metrics

	Uni-Directional	Bi-Directional East
85 th percentile	6min 33sec	7min 20sec
95 th percentile	6min 43sec	7min 22sec
Standard deviation	0min 13sec	0min 48sec
Longest	8min 13sec	7min 25sec
Shortest	5min 49sec	4min 59sec

501 QUEEN

Church to Long Branch WB

Uni-Directional

Service Rate

Headway: One vehicle every 10m Frequency: 6 vehicles per hour

Simulation Sample Size

Number of Simulation Runs: 20 Number of Peak Hour Transit Vehicles per Simulation Run: 6 Total Sample Size: 120 Transit Vehicle Runs

Average Travel Times

	Uni-Directional	Bi-Directional East
Loop Rd and Station	3min 10sec	3min 29sec
Lake Shore intersections dwell time/travel time	2min 29sec	3min 1sec
Total	5min 39sec	6min 30sec

Additional Total Travel Time Distribution Metrics

	Uni-Directional	Bi-Directional East
85 th percentile	6min 4sec	7min 31sec
95 th percentile	6min 4sec	7min 32sec
Standard deviation	0min 18sec	0min 48sec
Longest	6min 11sec	7min 34sec
Shortest	5min 8sec	5min 21sec

Original VS Updated Results

- TTC comments have been addressed and models have been updated accordingly
- · Negligible impacts on analysis results and conclusion

501 Queen EB (Long Branch to Church)

Original Submission

	Uni-Directional	Bi-Directional East
Loop Rd and Station	3min 4sec	3min 30sec
Lake Shore intersections dwell time/travel time	2min 26sec	1min 24sec
Total	5min 31sec	4min 54sec
Difference (Bi-Directional E Benefit)	- appi	rox. 35 secs

Updated Results

	Uni-Directional	Bi-Directional East
Loop Rd and Station	3min 17sec	3min 32sec
Lake Shore intersections dwell time/travel time	3min 37sec	2min 42sec
Total	6min 54sec	6min 15sec
Difference (Bi-Directional E Benefit)	- approx. 40 secs	

504 King (Park Lawn to Broadview)

Original Submission

	Uni-Directional	Bi-Directional East
Loop Rd and Station	3min 15sec	3min 34sec
Lake Shore intersections dwell time/ travel time	1min 57sec	1min 13sec
Total	5min 12sec	4min 47sec
Difference (Bi-Directional E Benefit)	- approx. 25 secs	

Updated Results

	Uni-Directional	Bi-Directional East	
Loop Rd and Station	3min 7sec	3min 29sec	
Lake Shore intersections dwell time/ travel time	3min 12sec	2min 33sec	
Total	6min 20sec 6min 2sec		
Difference (Bi-Directional E Benefit)	- approx. 20 secs		

501 Queen WB (Church to Long Branch)

501 Queen WB was not analyzed in the original submission

Updated Results

	Uni-Directional	Bi-Directional East	
Loop Rd and Station	3min 10sec	3min 29sec	
Lake Shore intersections dwell time/travel time	2min 29sec	3min 1sec	
Total	5min 39sec	6min 30sec	
Difference (Bi-Directional E Benefit)	+ approx. 50 secs		

Private Vehicle Operations – Speed Plot

• Travel time markers were included in all *Vissim* models to evaluate the impact of potential transit track configurations on private vehicle average speeds along the Parklawn Rd and Lakeshore Blvd corridors in the vicinity of the Christie's site

Average Private Veh Travel Times & Speeds

			Uni-Directional	Bi-Directional East
		Eastbound	2min 30sec	2min 33sec
Sho		Westbound	5min 16sec	5min 38sec
¥e	Average	Eastbound	14.39	14.13
La	Speed (km/h)	Westbound	7.06	6.59

			Uni-Directional	Bi-Directional East		
Ľ,	Trough Time of	Northbound	1min 49sec	1min 42sec		
Law	Traver Times	Southbound	1min 19sec	1min 21sec		
¥	Average	Northbound	16.00	17.10		
Ра	Speed (km/h)	Southbound	23.04	22.71		

Average Private Veh Speed Heat Map

Transit Vehicle Operations

- Streetcar travel times around Loop Rd are projected to take, on average, between 6 and 7 minutes, for all combinations of transit routes and potential track configurations.
- Unidirectional scenario transit travel times are marginally longer than Bidirectional East scenario transit travel times for the 501 Queen EB (Long Branch to Church) and the 504 King (Parklawn to Broadview) routes, by approximately 40 and 20 seconds, respectively.
- Bidirectional East scenario transit travel times are marginally longer than Unidirectional scenario transit travel times for the 501 Queen WB (Church to Long Branch) route, by approximately 50 seconds.
- Similar variability (30 to 60 seconds standard deviation) in travel time for different routes in both scenarios
- Overall, the transit track configuration is shown to have a limited influence on streetcar operations, as all modelled track configurations and transit route combinations perform well, with differences between each measured in seconds, rather than minutes.

Private Vehicle Operations

- Private vehicle travel times along segments of Lakeshore Blvd and Parklawn Rd adjacent to the site are very similar in both modelled scenarios.
- The choice of transit route configuration (unidirectional vs bidirectional east) is therefore projected to have little, if any, impact on private vehicle travel times along Lakeshore Blvd and Parklawn Rd.

Appendix A

Transit Signal Timing & Priority Strategy – Details

1. TSP Type 1 – Mid-Loop Rd Signals

TSP Type 1 | Model Signal Parameters

asic					Pattern 1	
SG Number	4		6	8	Signal Group: 4 6	8
SG Name	NBT		EB	SBT	Splits 60 25	60
Min Green	35		12	35	Splits Extension	
Veh Extension	3		3	3	Perm Min Green	_
Max 1	45		20	45	Min Green	
Yellow	3		3	3	Alternate Max	
Red Clearance	2		2	2	Veh Extension	
Ped SG Number	104		106	108	Transition Min	72
Walk	15		2	15	Force Off	/2
Ped Clear (EDW)	20		10	20	Permissive Start	_
Start Un					Permissive End	
Min Recall					Max 2	
Max Recall						
Ped Recall					Coordinated	
		Ø4 60:	sec			
		NB	т			
6 25sec		Ø104 3 Ø8 609	35sec Sec			

23

TSP Type 1 | Model Signal Parameters (cont.)

Co	ordination Priority	1							
	Transit SG:	301	302	303	304	30	5 306	307	308
	Vehicle SG Omits								
►	Ped SG Omits								
	Priority Mode	None	None	None	Early / Extend	Nor	e None	None	Early / Extend
	Extend Limit	1	1	1	15	1	1	1	15
Tee	and locate								
				-			7		0
	Inputs	4		5	0		,		0
	Call		-						
	Call Transit SGs	304							308
	Checkout Detectors								
	Delay Time								
	Extend Time								
	Travel Time	3							3
	Travel Time Slack	4							4
	Adjust Step								
	Adjust Max								
	Calling Pt. Detector								
	Lateness	0		0	0		0		0
	Check Out Limit								
	Check Out Mode	Normal		Normal	Normal		Norma	al	Normal
	Detector Type	Checkin / Checkor	t Check	kin / Checl	kout Checkin / Che	eckout	Checkin / Cł	neckout	Checkin / Checkout
	Presence		1						
	Check In	314		315	316		317		318
	Check Out	324		325	326		327		328

TSP Type 1 | Sample Actuation Cases & Cycle Responses

25

Vancouver, BC

Davis, California

2150 Lake Shore Boulevard West Protected Intersection Precedence North American Examples

2150 Lak Project: Project No. 7036-10 Date: February Revised:

Salt Lake City, Utah

Chicago, Illinois

ke Shore Blvd.	Scale		
25, 2021	Drawing No.	SN-01	

APPENDIX K: Lake Shore Boulevard Intersections Cycling Crossing Diagrams

