

First Capital Realty 2150 Lake Shore Boulevard West

Noise & Vibration Impact Assessment

	(.	IGHA	- AP		
2020-05-15	А	Felipe Vernaza	Mervyn Choy	Mark Armstrong	Final
Date	Rev.	Prepared By	Checked By	Approved By	Status
ΗΔΤΟΗ					

Executive Summary

Hatch Ltd. (Hatch) was retained by First Capital Realty (Client) to prepare a Noise and Vibration Impact Study in support of a Zoning By-Law Amendment (ZBA) / Draft Plan of Subdivision (SUB) Application and Official Plan Amendment Resubmission in support of a proposed Master Plan for the redevelopment of the 27.7 acre/11.2 hectare site located at the corner of Park Lawn Road and Lake Shore Boulevard West, municipally known as 2150-2194 Lake Shore Boulevard West and 23 Park Lawn Road site (hereafter referred to as "the site"). The site will include sensitive land uses, namely a residential condominium and a school. This Noise and Vibration Impact Study assesses the potential noise and vibration impacts from external sources to the site on the proposed sensitive uses. The site is not expected to impose noise impacts on adjacent sensitive land uses, but may pose impacts on itself, as subsequently discussed.

From a noise perspective, the dominant transportation noise sources in the area are vehicular traffic from the Gardiner Expressway and related ramps, Park Lawn Road, Lake Shore Boulevard West, and the Queensway, TTC streetcar traffic along Lake Shore Boulevard West and the future internal TTC streetcar loop, as well as passenger and freight train traffic travelling along the Lake Shore West railway corridor.

Transportation noise modelling was undertaken based on future traffic, train and streetcar volumes for major transportation corridors in the area. Transportation noise will be the most impactful noise component on the proposed development. As a result, noise control measures will be required to attenuate transportation sound levels to meet the Ministry of the Environment, Conservation and Parks (MECP) sound level criteria. Required noise control measures include:

- Upgraded window glazings from typical Ontario Building Code (OBC) standards. The required windows and wall STC ratings to mitigate indoor sound levels to MECP requirements are listed in Table 5-2. It is noted that optimization of window and wall STC ratings can be achieved once detailed unit floor plans become available.
- Brick veneer or acoustical equivalent construction for exterior walls within 100 metres from the rail tracks will be required at select exterior façades. For further details, refer to Section 5.1.1.
- Air conditioning, or provisions for the installation of air conditioning, will be required for all units within the proposed development. However, it is expected that a central air conditioning system will supply air conditioned air to all units within the proposed development, enabling residents to close windows should exterior noise levels increase.
- Warning clauses are to be included in offers of purchase or sale, or tenancy agreements, to formally notify future occupants of potential noise impacts. Refer to Table 5-3 for further details.

ΗΔΤϹΗ

2150 Lake Shore Boulevard West Noise & Vibration Impact Assessment - May 15, 2020

The Ontario Food Terminal north of the Gardiner Expressway was identified as the dominant source of stationary noise in the area. Future stationary noise sources include Public Announcement (PA) speakers along the platforms of the proposed Park Lawn GO Station and related rooftop units. Based on predicted stationary noise levels, it is concluded that noise control measures will not be required within the proposed development to mitigate stationary noise.

However, this assessment is deemed preliminary, as the mechanical system of the proposed buildings has not been designed. Typical stationary noise sources in residential developments include HVAC equipment, parking garage ventilation exhaust shafts, and auxiliary generators. Once these details become available, the findings of this study should be reviewed and updated if required, as the development could have a noise impact on itself.

From a vibration perspective, the major sources of vibration are commuter and freight (switcher) rail traffic along the Lake Shore West line, and streetcar traffic along Lake Shore Blvd. West. In the future, a planned internal TTC streetcar loop will also be a major vibration source with the potential to impact the proposed sensitive uses.

Vibration levels were predicted based on existing train pass-bys along the Lake Shore West rail corridor, and Toronto Transit Commission (TTC) streetcar pass-bys. Vibration limits will be exceeded in the vicinity of the boarding/loading platforms by Block D2-2 due to TTC streetcar pass-bys.

- At this location, streetcar speeds were conservatively assumed to be 30 km/h. However, it is likely that TTC streetcars will travel at slower speeds. Based on a sensitivity analysis, vibration levels will become compliant at speeds of 15 km/h or lower. Thus, discussions should be held with the TTC to determine operating speeds of streetcars in this area.
- If it is found that TTC streetcars will travel faster than 15 km/h, vibration mitigation will be required, such as embedded rail rubber boot isolators at special track locations.
- Although not required, a combination of resilient track work and reduced TTC streetcar speeds near Block D2-2 can achieve FTA recommended indoor ground-borne noise levels of 35 dBA. Floating slabs can also meet this objective sound level at speeds of up to 30 km/h.

Table of Contents

Glo	essary of Terms and Acronyms	. vi				
1.	Introduction	1				
	1.1 Purpose of Report	1				
2.	Study Area	1				
	 2.1 Project Description	1 1 3				
3.	Method of Prediction	7				
	 3.1 Transportation Noise Modelling	7 8 10 10				
	 3.3 Vibration Modelling 3.3.1 Vibration Modelling Assumptions 	11 12				
4.	Noise and Vibration Criteria	15				
	 4.1 Transportation Sources Noise Criteria	15 15 16 16 17				
5.	Sound Level Analysis Findings	18				
	 5.1 Transportation Noise Findings	18 19 21 22				
6.	Vibration Analysis Findings	23				
	6.1 Ground-borne Noise	24				
7.	Implementation Procedures	24				
8.	Conclusions and Recommendations25					
9.	References	27				

List of Figures

Figure 2-1 Transportation Noise Sensitive Receptors	5
Figure 2-2 Stationary Noise Sensitive Receptors	6
Figure 2-3 Vibration Points of Reception	7
Figure 3-1 Point Source Locations Representing TTC Streetcar Wheel Squeal Events	10
Figure 3-2 Generalized Ground Surface Vibration Curves	12

List of Tables

Table 2-1: Transportation and Stationary Noise Receptors	3
Table 3-1: Roadway Traffic Data Inputs	8
Table 3-2: Future Train/TTC Streetcar Volume Inputs	9
Table 3-3: PA Speak and HVAC RTU Sound Power Spectra	11
Table 3-4: FTA General Method (Vibration) Model Assumptions	13
Table 4-1: MECP's NPC-300 Transportation Indoor Sound Level Criteria	15
Table 4-2: MECP's NPC-300 Transportation Outdoor Living Space Sound Level Criteria	16
Table 4-3: MECP's NPC-300 Transportation Ventilation and Warning Clause Requirements	16
Table 4-4: MECP's NPC-300 Class 1 Area Exclusion Limits	17
Table 4-5: Applicable Stationary Noise Sound Level Criteria	17
Table 4-6: Vibration Limits	18
Table 5-1: Predicted Transportation Sound Levels	18
Table 5-2: Window and Wall STC Requirements	20
Table 5-3: Warning Clauses	21
Table 5-4: Applicable Stationary Noise Sound Level Criteria	22
Table 6-1: Predicted Vibration Levels	23
Table 6-2: Vibration Sensitivity Analysis at Receptor V1	24

List of Appendices

Appendix A

ORNAMENT/STEAM Comparison with FTA/TNM

Appendix B

Traffic Volumes

Appendix C

Building Envelope Noise Reduction Calculation

Appendix D

Embedded Track Vibration Isolators

Glossary of Terms and Acronyms

Ambient sound level	The sound level that is present in the environment, produced by noise sources other than the source under the impact assessment. (Ontario Ministry of the Environment, 2013)					
AIF	Acoustical Insulation Factor. The AIF is based on the difference between the outside predicted sound levels and the required indoor sound levels, plus factors to account for the number of room components (e.g., windows, doors, walls)					
Cadna/A	Software package used for predicting sound levels due rail, road, and other sources.					
dB	The standard unit of measure for unweighted sound pressure level (reference 2x10 ⁻⁵ Pa) or sound power level (10 ⁻¹² W). A decibel is the unit of level which denotes the ratio between two quantities that are proportional to power; the number of decibels is 10 times the logarithm of this ratio. (Federal Transit Administration, 2006). This unit is used herein to quantify changes in overall levels.					
dBA	The A-weighted sound pressure level. (Ontario Ministry of the Environment, 2013). This unit is used herein to quantify overall noise level.					
Equivalent Continuous Sound Level	The A-weighted sound level of a steady sound carrying the same total energy in the time-period T as the observed fluctuating sound. The time period T is given in hours. (Ontario Ministry of the Environment, 2013)					
Frequency of Vibration	The number of times that a periodically occurring quantity repeats itself in a specified period. With reference to noise and vibration signals, the number of cycles per second. (Federal Transit Administration, 2006)					
FTA	Federal Transit Administration					
GO	GO Transit					
Hertz (Hz)	The unit of acoustic or vibration frequency representing cycles per second.					
HVAC	Heating, ventilation and air-conditioning					
Leq	Equivalent Continuous Sound Level. The A-weighted sound level of a steady sound carrying the same total energy in the time period T as the observed fluctuating sound. The time-period T is given in hours. (Ontario Ministry of the Environment, 2013)					
MOE, MOEE, MOECC, MECP	Ministry of the Environment/Ministry of the Environment and Energy/Ministry of the Environment and Climate Change/Ministry of Environment, Conservation and Parks. The Ministry of the Environment was created in 1972 and merged with the Ministry of Energy to form the Ministry of					

	Environment and Energy (MOEE) from 1993 to 1997 and again in 2002. The Ministry of the Environment changed its name to the Ministry of the Environment and Climate Change (MOECC) on June 24, 2014, and then changed it to the Ministry of Environment, Conservation and Parks in August 2018. Thus, MOE, MOEE, MOECC and MECP are synonymous for the purposes of this Report.					
MOECC	Ministry of Environment and Climate Change. MOE, MOEE, MOECC and MECP are synonymous for the purpose of this report.					
MOEE	Ministry of Energy and Environment. MOE, MOEE, MOECC and MECP are synonymous for the purpose of this report.					
MECP	Ministry of Conservations and Parks. MOE, MOEE, MOECC and MECP					
Noise	Unwanted sound. (Ontario Ministry of the Environment, 2013)					
NSA	Noise Sensitive Area. Land over which users are sensitive to noise. Also referred to as Noise Sensitive Land use (Ontario Ministry of the Environment, 2013) that accommodates a residential dwelling, a building for commercial use, or a building for institutional use where occupants can be considered to be noise sensitive. Noise sensitive also considers vibration sensitive herein.					
NPC	Noise Pollution Control					
PPV	Peak Particle Velocity. The peak signal value of an oscillating vibration velocity waveform, usually expressed in millimetres/second in Canada. (Federal Transit Administration, 2006)					
Plane of window	A point in space corresponding with the location of the centre of a window of a noise sensitive space. (Ontario Ministry of the Environment, 2013)					
POR	Point of Reception is defined as any location on a noise sensitive land use where noise from a noise source is received. Noise sensitive land uses may have one or more points of reception. (Ontario Ministry of the Environment, 2013)					
Receptors	Refer to "Point of Reception"					
RER	Regional Express Rail					
RMS	Root-Mean-Square Velocity. The square root of the mean-square value of an oscillating waveform, where the mean-square value is obtained by squaring the value of amplitudes at each instant of time and then averaging these values over the sample time. (Federal Transit Administration, 2006)					
Sensitive Area	Refer to "Noise Sensitive Area"					

Sensitive Land Uses	Refer to "Noise Sensitive Area"
Sensitive Receptor	Refer to "Point of Reception"
Sound Pressure Level	The A-weighted sound level of a steady sound carrying the same total energy in the time period T as the observed fluctuating sound. The time period T is given in hours. (Ontario Ministry of the Environment, 2013)
STC	Sound Transmission Class. STC is a rating describing how well a partition such as a wall, window or door attenuates air-borne sound.
Vibration	An oscillation wherein the quantity is a parameter that defines the motion of a mechanical system. (Federal Transit Administration, 2006)
Vibration Sensitive Area	A residential dwelling or place where people ordinarily sleep or a commercial/industrial operation that is exceptionally sensitive to noise and vibration. (Ministry of Environment and Energy, 1994)
VdB	Vibration level in decibels (reference 10 ⁻⁶ in/sec or 2.54x10 ⁻⁵ mm/sec). This unit is used herein to quantify overall vibration levels using the FTA general calculation method.

1. Introduction

1.1 Purpose of Report

Hatch Ltd. (Hatch) was retained by First Capital Realty to prepare a Noise and Vibration Impact Study for the combined Zoning By-Law Amendment (ZBA) / Draft Plan of Subdivision (SUB) Application, and Official Plan Amendment resubmission for 2150-2194 Lake Shore Boulevard West and 23 Park Lawn Road ('the site'). The site will include sensitive land uses, namely residential condominiums and a school. This Noise and Vibration Impact Study assesses the potential noise and vibration impacts from external sources to the site on the proposed sensitive uses. This study will also assess the noise and vibration impacts on the site surroundings and itself, given the introduction of the proposed development features.

2. Study Area

2.1 Project Description

2.1.1 The Original Master Plan Proposal (October, 2019)

In October 2019, FCR (Park Lawn) LP and CPPIB Park Lawn Canada Inc. ('the Owners') made an application for an Official Plan Amendment (OPA) in support of a proposed Master Plan for the redevelopment of the 27.7 acre / 11.2 hectare site located on the northeast corner of Park Lawn Road and Lake Shore Boulevard West, municipally known as 2150-2194 Lake Shore Boulevard West and 23 Park Lawn Road site ("the site" or "2150 Lake Shore"). The original Master Plan proposal envisioned a vibrant, mixed-use, transit-oriented redevelopment of the site. The Master Plan included a new Park Lawn GO Station, related TTC transit improvements, a fine-grained network of new streets and connections, a range of new open spaces including a new public park, and a diverse mix of residential, retail, service, entertainment and employment uses. At that time, the Master Plan contemplated a range of built form typologies including low, mid and high-rise buildings, fifteen towers ranging in height from 22 to 71 storeys.

2.1.2 The Revised Master Plan Proposal

The Master Plan for the site has further evolved, both in response to comments and suggestions from stakeholders, including City staff, and as a result of a more detailed review to support this combined Zoning By-law Amendment application, Draft Plan of Subdivision application, and OPA resubmission ('the application'). The fundamental vision and key elements of the Master Plan remain consistent, including

• An Integrated Transit Hub: the new Park Lawn GO station is located along the northern edge of the site, with the platform spanning the Park Lawn Road right of way and a direct interface with the redeveloped site. A TTC streetcar loop is proposed to bring streetcars into the site, integrating directly with the GO station. Bus service stops are located on Park Lawn Road, also in close proximity to entrances to the GO platform, providing seamless connections between public transit modes.

- The Relief Road: a new relief road (Street A) is proposed along the northern edge of the site, connecting the Park Lawn Road Gardiner access ramp with the Gardiner ramp to the east. The proposed relief road works to divert vehicular traffic away from Park Lawn Road and Lake Shore Boulevard West to relieve existing congestion in the area. It also provides access to the proposed shared below-grade parking and servicing areas within the site, significantly minimizing the impacts of vehicles on the public realm.
- New Local Street Network: new internal streets extend from the surrounding street network, responding to the unusual shape of this large site to create a loop road (Street B) with spokes that will draw transit vehicles, cars, pedestrians and bikes into the site, and create a multi-modal transit node at the GO station.
- Diverse Open Space Network: a range of new interconnected open spaces are proposed across the site, including a new public park, two large squares, a covered galleria (discussed below), and a series of groves, largos (enlarged sidewalks), lanes and mews, which together provide a rich network of places for every-day community interaction, recreation, play and relaxation.
- The Galleria: the galleria functions as a covered pedestrian street lined with a variety of
 retail, services and amenities. It is open to the elements while still offering protection from
 wind, rain and snow, extending opportunities for vibrant activity during all seasons. The
 galleria and public park are located at the centre of the site, creating a vibrant 'dual-heart'
 for the project.
- Employment, Retail Services & Entertainment: 64,392 m² of employment / office gross floor area (GFA) is included in the Master Plan, creating a significant cluster of new office-type jobs at the GO Station and within the galleria. This is complemented by a range of retail, service, amenity and entertainment uses that together make up 36,659 m² of GFA, providing a regionally accessible employment cluster that contributes to the creation of a complete community.
- A Range of New Homes: the Master Plan includes a substantive residential component, including 557,642 m² of residential GFA, estimated as approximately 7,139 units. This includes a range of unit sizes, typologies and tenure, including a significant commitment to affordable housing and a high percentage of larger units appropriate for families (10% 3+ BD, 15% 2B+Den, 25% 2B).
- Distinct Architecture: the Master Plan features a range of building types that blend forms and uses, and respond to the distinct geometry of the proposed street and block pattern. Fifteen towers are proposed on the site with heights ranging from 16 to 70 storeys, with the tallest towers generally clustered near the GO Station. The towers feature generous separation distances, and are interspersed with a range of standalone mid-rise and low-rise building typologies to create a sense of place and urban fabric that appears to have evolved over time.

2.2 Description of Development Area

The redevelopment of the 11.2 hectare site is located on the northeast corner of Park Lawn Road and Lake Shore Boulevard West, municipally known as 2150-2194 Lake Shore Boulevard West and 23 Park Lawn Road.

From a noise perspective, the dominant transportation noise sources in the area are vehicular traffic from the Gardiner Expressway and related ramps, Park Lawn Road, Lake Shore Boulevard West, and the Queensway, TTC streetcar traffic along Lake Shore Boulevard West and the future internal TTC streetcar loop, as well as passenger and freight train traffic travelling along the Lake Shore West rail corridor. The Ontario Food Terminal north of the Gardiner Expressway was identified as the dominant source of stationary noise in the area. Future stationary noise sources include Public Announcement (PA) speakers at the proposed Park Lawn GO Station and related rooftop air conditioning units.

From a vibration perspective, the major sources of vibration are train traffic along the Lake Shore West rail corridor, and streetcar traffic along Lake Shore Boulevard West. In the future, a proposed internal TTC streetcar loop is also a major vibration source with the potential to impact the proposed sensitive uses.

2.3 Sensitive Receptors

Transportation and stationary noise representative sensitive receptors were selected within the site boundaries. The sensitive receptors were selected on a worst-case basis, and they represent a variety of conditions, including near-proximity, full or partial exposure to the dominant noise sources in the area. Figure 2-1 and Figure 2-2 show the location of the transportation and stationary noise receptors, respectively, within the site. Table 2-1 lists the identified sensitive transportation and stationary noise receptors.

Receptor	Block	Land Use	Transportation Noise Exposure	Stationary Noise Exposure	Description ⁽¹⁾
A1			Y	Ν	Facing NW, elevated.
A2			Y	Ν	Facing SW, elevated
A3	А	Residential	Y	Ν	Facing NE, ground floor
A4			Y	Ν	Facing NW, elevated
A5			Y	Ν	Facing SE, elevated
B1			Y	Ν	Facing SW, ground floor
B2	В	Residential	Y	Ν	Facing SE, 2 nd floor
B3			Y	Ν	Facing NW, elevated
C1			Y	Ν	Facing SW, 2 nd floor
C2	С	Residential	Y	Ν	Facing NW, elevated
C3			Y	N	Facing NE, 2 nd floor
D1	D	Residential	Y	Y	Facing NW, elevated

 Table 2-1: Transportation and Stationary Noise Receptors

Receptor	Block	Land Use	Transportation Noise Exposure	Stationary Noise Exposure	Description ⁽¹⁾
D2			Y	Y	Facing N, elevated
D3			Y	Y	Facing SW, elevated
D4			Y	Y	Facing NW, elevated
D5		School	Y	Y	Facing NW, ground floor
D6			Y	Y	Facing NW, elevated
D7		Residential	Y	Y	Facing NW, elevated
D8			Y	Y	Facing N, elevated
F1			Y	Y	Facing N, elevated
F2	F	Residential	Y	Y	Facing W, elevated
F3			Y	Ν	Facing S, elevated

(1) Elevation varies depending on whether this is a transportation or stationary noise receptor. Worstcase elevations were selected for each case.

Figure 2-1 Transportation Noise Sensitive Receptors

Figure 2-2 Stationary Noise Sensitive Receptors

Vibration sensitive receptors were selected at the nearest sensitive locations from the Lake Shore West rail corridor and the TTC streetcar tracks. Figure 2-3 shows the location of the vibration sensitive receptors.

Figure 2-3 Vibration Points of Reception

3. Method of Prediction

3.1 Transportation Noise Modelling

3.1.1 Methods of Prediction

Transportation noise modelling was undertaken using the General Method from the United States Federal Transit Administration (FTA) "Transit Noise and Vibration Impact Assessment"[1] and the United States Federal Highway Administration (FWA) "Traffic Noise Model Version 2.5" (TNM 2.5) [2]. These two algorithms are included in the Cadna/A noise prediction software.

A.1.1.1 The Ministry of the Environment, Conservation and Parks (MECP) "Publication NPC-300: Environmental Noise Guideline, Stationary and Transportation Sources – Approval and

Planning" (hereafter NPC-300) [4] makes reference to the Ontario Road Noise Analysis Method for Environment and Transportation (ORNAMENT) [5] and the Sound from Trains Environmental Analysis Method (STEAM) [6] algorithms contained within the STAMSON v5 noise prediction software. However, NPC-300 notes that "other traffic noise prediction models have been and are being developed and may be adopted from time to time". A comparison between the ORNAMENT/STEAM and FTA/TNM algorithms was undertaken using STAMSON and Cadna/A. The comparison reveals that both models yield similar values, the CadnaA resulting in sound levels about 2 dB higher than Stamson. For further details, please refer to Appendix A.

Further, the Cadna/A model allows for more detailed modelling, which includes terrain elevation contours, differing elevations for different roadways, the 3D modelling of the proposed development buildings and existing surrounding buildings, and their impact on sound level propagation, amongst others features. The STAMSON software is essentially a 2D model, which assumes same height conditions along a single road/rail segment. Thus, as the site area features complex geometry, modelling through Cadna/A is the preferred method of assessment.

3.1.2 Transportation Noise Model Inputs

Vehicular noise traffic was modelled based on future total daily traffic volumes projected by BA Group. These are summarized in Table 3-1 and further details are provided in Appendix B. It was assumed that all vehicles will be travelling at the posted speed limit, regardless of congestion that may occur in the area.

Pood	Section	Day Traffic Volume 07:00 to 23:00			Night Traffic Volume 23:00 to 07:00		
KUdu		Total Volume	Med. Truck %	Heavy. Truck %	Total Volume	Med. Truck %	Heavy. Truck %
Park Lawn Rd	Immediately North of Gardiner Expy WB On Ramp	29,080	1%	2%	3,230	3%	2%
Park Lawn Rd	Immediately South of Gardiner Expy EB Off Ramp	26,445	0%	1%	2,940	0%	1%
Park Lawn Rd	Immediately North of Lake Shore Blvd W	15,655	0%	1%	1,740	0%	1%
Lake Shore Blvd W	Immediately West of Park Lawn Rd	26,230	1%	1%	2,915	1%	1%
Lake Shore Blvd W	Immediately East of Park Lawn Rd	23,240	1%	1%	2,580	0%	1%
Lake Shore Blvd W	Immediately East of Brookers Ln	9,925	0%	2%	1,105	0%	1%
The Queensway	Immediately East of Park Lawn Rd	36,030	1%	1%	4,005	3%	1%
Gardiner Expy WB On Ramp	From Park Lawn Rd	13,980	3%	2%	1,555	8%	3%

Table 3-1: Roadway Traffic Data Inputs

Road	Section	Day Traffic Volume 07:00 to 23:00			Night Traffic Volume 23:00 to 07:00		
Nodu		Total Volume	Med. Truck %	Heavy. Truck %	Total Volume	Med. Truck %	Heavy. Truck %
Gardiner Expy EB Off Ramp	To Park Lawn Rd	15,525	1%	1%	1,725	2%	2%
Gardiner Expy Ramps	To/From Relief Rd (Lake Shore)	16,200	0%	1%	1,800	0%	0%
Gardiner Expy	Between Park Lawn Rd and Humber River	141,770	8% ⁽¹⁾	3%(1)	25,020	8% ⁽¹⁾	3% ⁽¹⁾

⁽¹⁾Truck percentages were not available for the Gardiner Expressway. Truck percentages are based on highest truck percentages related to the Gardiner Expressway On/Off Ramps.

At the time of writing, future train volumes were not available from Metrolinx. As a result, train volumes used for this assessment were extracted from the GO Rail Network Electrification TPAP Noise/Vibration Modelling Report – Lake Shore West Corridor prepared by RWDI Inc. and dated September 2017 [7]. References [8] and [9] were consulted as well; the highest train volumes were conservatively selected. As Park Lawn GO Station future train schedules were unavailable, it was conservatively assumed that all trains will be travelling at the highest allowable speed through the station.

TTC Streetcar volumes were based on existing schedules. For the internal TTC streetcar loop, the same volumes as the Queen 501 streetcar route were conservatively assumed.

Table 3-2 summarizes the train and TTC streetcar inputs incorporated into the Cadna/A model.

Table 3-2: Future	Train/TTC Streetcar	Volume Inputs
-------------------	---------------------	----------------------

Train Type	Direction	Day Volume 07:00 to 23:00	Night Volume 23:00 to 07:00	Speed (km/h)	No. Locomotive s	No. Cars
	EB	71	26	105	1	12
GO Regular	WB	69	25	105	1	12
	EB	8	1	105	1	12
GO Express	WB	8	0	105	1	12
GO Non-	EB	40	9	105	1	12
Revenue	WB	39	8	105	1	12
VIA	EB	5	1	129	1	5
	WB	6	0	129	1	5
VIA Non-	EB	5	1	129	1	30
Revenue	WB	6	0	129	1	30
CN Freight	EB & WB	0	3	97	4	25
TTC Streetcar Lakeshore W	EB & WB	210	98	50 km/h		
TTC Internal Loop	EB & WB	210	98	30 km/h		

Additional noise from wheel squeal resulting from tight TTC Streetcar tight curves was incorporated into the noise model. A point source was added to the model at the locations shown in Figure 3-1, based on TTC streetcar measurements from reference [10]. Wheel squeal was applied to the model as follows:

- Lmax of 85 dBA at approximately 8 metres;
- Hemispherical propagation to calculate sound power;
- A 5 dB tonal penalty was added to account for the tonal nature of wheel squeal; and

- Squeal event of 5 seconds per vehicle.

Figure 3-1 Point Source Locations Representing TTC Streetcar Wheel Squeal Events

3.2 Stationary Noise Modelling

3.2.1 Method of Prediction

Stationary noise was modelled using the MECP-approved ISO 9613-2 [3] algorithm, also included in the Cadna/A noise prediction software.

3.2.2 Stationary Noise Model Inputs

Modelled stationary noise sources included Public Announcement (PA) speaker and Heating, Ventilation and Air Conditioning (HVAC) rooftop units, and truck traffic from the Ontario Food Terminal to the north.

Table 3-3 summarizes the PA speaker and rooftop unit reference sound power levels used for this assessment. Sound power levels were obtained from data collected in the design of other transit stations Hatch has been involved in.

Source	Sound Power (dB)							
Source	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
PA Speakers	22	90	101	100	104	107	108	97
HVAC RTU	91	88	79	73	72	68	63	56

Table 3-3: PA Speak and HVAC RTU Sound Power Spectra

Hatch notes that at the time of writing, the design of the future Park Lawn GO station was not available. However, based on experience from other transit stations, the following assumptions were made:

 PA speakers were assumed to operate approximately 7.5 minutes per 8-hour shift. The number of speakers and their spacing was determined based on Google Maps and Streetview photography in vicinity of Mimico Station. A total of 46 PA speakers were modelled along the future Park Lawn GO station platform.

Within the proposed development, it is assumed that all mechanical equipment will be enclosed in a mechanical room in the penthouse; therefore, noise contributions from mechanical equipment is expected to be negligible. However, once details regarding mechanical equipment become available, this assumption will need to be verified, and this report will need to be updated if required.

Similarly, at the time of writing, information related to exhaust shafts for the ventilation of the underground parking was not available. Thus, exhaust shaft noise has not been included in this assessment. Once available, this report will need to be updated as required.

3.3 Vibration Modelling

The anticipated vibration levels resulting from the proposed TTC streetcar loop and the train pass-bys travelling along the Lake Shore West rail corridor were predicted using the general vibration assessment method described in Chapter 10 of the US Federal Transit Administration (FTA) guidelines [1].

Using the generalized ground surface vibration curve for *Rapid Transit or Light Rail Vehicles*, as illustrated in Figure 3-2, a vibration emission baseline curve can be established. This curve is based on both heavy and light rail vehicles on at-grade and subway track across north America. This is a conservative approach as the curve is based on the upper range of measured data from well-maintained systems.

Figure 3-2 Generalized Ground Surface Vibration Curves

The vibration-to-distance decay baseline curve is then adjusted based on several parameters specific to the operating transit system and its surroundings. This is further discussed below.

The adjusted curve is used to identify the vibration impact at the identified PORs.

3.3.1 Vibration Modelling Assumptions

This vibration assessment is based on the following assumptions:

- Part of the TTC streetcar will travel on top of the underground parking and will be supported by a slab, as shown in Figure 2-3. Based on the streetcar data collected for the Eglinton Crosstown Light Rail Transit Project Noise and Vibration Report prepared by J.E. Coulter [11], TTC streetcar frequencies peak at 50 Hz. It is assumed that the resonant frequencies of the slab will be below 50 Hz. Furthermore, it is assumed that the mass of the slabs supporting streetcars will be at least 3 times the mass of the streetcars. Thus, this assessment assumes there will be no vibration amplification through the slabs supporting the streetcars.
- Currently, no special track work is proposed as part of the new Park Lawn GO station.

Table 3-4 summarizes the modelling parameters and associated assumptions.

	Value							
Modelling	V1	V1	V2	V3	V4	Basis of Assumption		
Parameter	MX Corridor	TTC Streetcar	TTC Streetcar	TTC Streetcar	TTC Streetcar			
Speed	129 km/h		30 km/h			one of the key principles of the Master Plan is to create complete streets and prioritize pedestrian mobility. This is achieved through the implementation of traffic calming measures within the site and the streetcar loop, such as narrow lanes, trees/landscaping and speed reduction measures. Although not specified, a speed limit of 30 km/h along the loop is assumed based on the Traffic Calming Guide for Toronto [13], which states local roads can have speed limits as low as 30 km/h. This assumption has been verified with BA Group. Based on information provided by VIA, trains will be traveling at up to 129 km/h. This is faster than GO passenger, VIA passenger, and freight trains.		
Vehicle	New or whee suspension.	el maintaine	d. No whee	el flats, no si	tiff primary	It is assumed that TTC streetcars will be well maintained, without worn wheels or wheel flats.		
Track conditions	Well maintained, non-jointed track, no special track work.	Special track work.	Well main non-jointe no specia work.	ntained, ed track, I track	Special track work.	Based on special trackwork shown in Master Plan architectural drawings. Tracks will be new.		

Table 3-4: FTA General Method (Vibration) Model Assumptions

ΗΔΤCΗ

2150 Lake Shore West Boulevard Noise & Vibration Impact Assessment - May 15, 2020

			Value				
Modelling	V1	V1	V2	V3	V4	Basis of Assumption	
Faranielei	MX Corridor	TTC Streetcar	TTC Streetcar	TTC Streetcar	TTC Streetcar		
Ground Propagation	Typical	Effic	cient	Тур	bical	Efficient propagation is assumed for slab-supported tracks as it absorbs less energy than tracks supported on the ground.	
Coupling loss	Large Masonry Structure			Based on architectural drawings.			
Floor-to-floor attenuation	No floor-to-floor attenuation.			Typically there is dispersion and attenuation of vibration energy as it propagates through the structure. However conservatively no attenuation is assumed; structural drawings are not available.			

4. Noise and Vibration Criteria

The noise criteria are based on the MECP publication NPC-300. NPC-300 is primarily intended for the purposes of Ontario Municipalities, whose planners are required to review and comment on new developments, official plans, official plan amendments, etc., in accordance with the requirements of the *Planning Act*.

The vibration criteria are based on the Canadian National Railways (CN) Principal Main Line Requirements [14], the Federation of Canadian Municipalities (FCM) and Railway Association of Canada (RAC) Guidelines [15] (FCM/RAC Guidelines), the MOEE/TTC "Draft Protocol for Noise and Vibration Assessment for the Proposed Waterfront West Light Rail Transit Line" [17] (MOEE/TTC Draft Protocol), and the Metrolinx "Environmental Guide for Noise and Vibration Impact Assessment"[16]

The following sections below summarize the applicable noise and vibration criteria applying to the different components of this assessment.

4.1 Transportation Sources Noise Criteria

4.1.1 Indoor Sound Level Limits

Table 4-1 summarizes the transportation noise criteria applicable to indoor spaces based on NPC-300. Plane of window sound level limits are provided for the daytime and nighttime periods, for both road and rail traffic noise sources. If these limits are exceeded, building components (e.g., windows, walls, doors) should be designed such that indoor sound levels meet the indoor spaces sound level limits shown below.

Point of Reception	Daytime Leq (16h) dBA 07:00 to 23:00		Daytime Leq (8h) dBA 23:00 to 07:00		Daytime Leq (8h) dBA 0 23:00 to 07:00		Requirements
	Road	Rail	Road Rail				
Plane of Window							
Plane of Window	65	60	60 55		If exceeded, design building components to meet indoor sound levels below.		
Indoor Spaces				S			
Living/Dining Area	45	40	40	40	Meet these indoor sound levels through		
Sleeping Quarters	45	40	40	35	thresholds above are exceeded		

Table 4-1: MECP's NPC-300 Transportation Indoor Sound Level Criteria
--

Further, NPC-300 requires brick veneer or acoustical equivalent construction for exterior walls within 100 metres from the rail tracks, if sound levels are predicted to exceed 60 dBA.

4.1.2 Outdoor Sound Level Limits

Table 4-2 summarizes the transportation noise requirements applicable to outdoor living spaces based on NPC-300. Note that these are applicable only to the daytime period.

Point of Reception	Daytime Leq (16h) dBA 07:00 to 23:00	Requirements
	≤55	None
Outdoor Living Area	Between 56 and 60	 Noise Barrier OR Type 'A' Warning Clause
	> 60	 Noise Barrier reducing L_{eq} (16h) to 55 dBA OR Noise Barrier reducing L_{eq} (16h) to 60 dBA + Type 'B' Warning Clause

Table 4-2: MECP's NPC-300 Transportation Outdoor Living Space Sound Level Criteria

4.1.3 Ventilation and Warning Clause Requirements

Table 4-3 summarizes the transportation noise ventilation and warning clause requirements based on NPC-300.

Table 4-3: MECP's NPC-300 Transportation Ventilation and Warning Clause Requirements

Point of Reception	Time Period	Leq (Road + Rail) dBA	Requirements
		≤55	None
Plane of Window	Daytime – 07:00 to 23:00	Between 56 and 65	 Unit must include provisions for future installation of central air conditioning Type 'C' Warning Clause
		> 65	 Unit must include central air conditioning Type 'D' Warning Clause
		≤50	None
	Nighttime – 23:00 to 07:00	Between 51 and 60	 Unit must include provisions for future installation of central air conditioning Type 'C' Warning Clause
		> 60	 Unit must include provisions for future installation of central air conditioning Type 'D' Warning Clause
Outdoor Living Area	Daytime - 07:00 to 23:00	Between 56 and 60	

Metrolinx and CN also require warning clauses for development located within 300 metres of their right-of-way. Specific wording is included in Section 5.1.2.

4.2 Stationary Sources Noise Criteria

The stationary noise criteria are based on the NPC-300 guidelines. The applicable criteria are the higher between either the Exclusion Limits stipulated in Section B7.1 of NPC-300 or background sound levels.

Table 4-4 summarizes NPC-300's exclusion limits for a development proposed in a Class 1 Area. The site is located in a Class 1 Area as it exhibits an acoustic environment of a major urban centre.

Point of Reception	Daytime Leq (1h) dBA 07:00 to 19:00	Evening Leq (1h) dBA 19:00 to 23:00	Nighttime Leq (1h) dBA 23:00 to 07:00
Plane of Window	50	50	45
Outdoor Point of Reception	50	50	N/A

Table 4-4: MECP's NPC-300 Class 1 Area Exclusion Limits

Background Sound levels were calculated based on existing traffic data obtained from the City of Toronto. Conservatively, traffic volumes were not grown to year 2020 existing conditions. Table 4-5 summarizes the calculated background sound levels for each of the identified worst-case representative stationary receptors, for the daytime, evening and nighttime. As these latter ones are higher than MECP's exclusion limits, they become the applicable stationary noise criteria.

Table 4-5: Applicable Stationary Noise Sound Level Criteria

Point of Reception	Daytime Leq (1h) dBA 07:00 to 19:00	Evening Leq (1h) dBA 19:00 to 23:00	Nighttime Leq (1h) dBA 23:00 to 07:00
D1	68	50 ⁽¹⁾	59
D2	68	50 ⁽¹⁾	59
D3	66	50 ⁽¹⁾	57
D4	69	50 ⁽¹⁾	60
D5	64	50 ⁽¹⁾	55
D6	72	50 ⁽¹⁾	64
D7	69	50 ⁽¹⁾	60
D8	70	50 ⁽¹⁾	61
F1	71	50 ⁽¹⁾	60
F2	70	50 ⁽¹⁾	60

(1) MECP exclusion limit for a Class 1 area as traffic data was unavailable to calculate evening background levels.

4.3 Vibration Criteria

The vibration criteria are based on the CN Principal Main Line Requirements, the FCM/RAC Guidelines, the MOEE/TTC Draft Protocol, and the Metrolinx Guide. Table 4-6 summarizes the vibration limits according to the above-noted publications.

Table	4-6:	Vibration	Limits
-------	------	-----------	--------

Source	Limit (mm/sec RMS)
Canadian National Railways	0.14
MOEE/TTC Draft Protocol	0.14
FCM/RAC Guidelines	0.14
Metrolinx Guide	0.14

Based on Table 4-6, the applicable vibration limits are 0.14 mm/s.

5. Sound Level Analysis Findings

5.1 Transportation Noise Findings

Table 5-1 summarizes the predicted transportation sound levels. As can be seen, either provisions for the future installation for air conditioning, or air conditioning, is required for all receptors based on noise levels predicted outdoors at the plane of the window. However, it is expected that all buildings will have a central air conditioning system, meeting or exceeding the ventilation requirements noted below.

Furthermore, the design of building components will be required to meet MECP's indoor sound level limits at representative receptors A1-A3, C2, D1-D8 and F1-F2. Predicted transportation sound levels from these receptors will be extrapolated to other locations within the site, and on that basis, minimum Sound Transmission Class (STC) ratings for windows and walls will be recommended.

ceptor	Dayti Leq 1	Daytime Plane-of- Window eq 16 hours, dBA		Nighttime Plane-of- Window Leq 8 hours, dBA		Ventilation Requirement	Design of Building	
Re	Road	Rail	Tot.	Road	Rail	Tot.		Components?
A1	65	58	65	57	57	60	AC Provisions	YES
A2	66	58	66	58	57	60	AC	YES
A3	60	74	75	54	71	74	AC	YES
A4	63	52	63	55	51	54	AC Provisions	NO
A5	55	61	62	48	58	61	AC	YES
B1	55	50	56	48	49	52	AC Provisions	NO
B2	59	59	62	52	57	60	AC Provisions	YES
B3	58	54	59	50	52	55	AC Provisions	NO
C1	62	53	63	55	53	56	AC Provisions	NO
C2	65	61	67	57	59	62	AC	YES
C3	55	58	60	48	56	59	AC Provisions	YES
D1	70	64	71	62	63	66	AC	YES
D2	70	64	71	62	62	65	AC	YES
D3	68	60	69	60	59	62	AC	YES

ceptor	Daytime Plane-of- Window Leq 16 hours, dBA			Nighttime Plane-of- Window Leq 8 hours, dBA			Ventilation Requirement	Design of Building
Re	Road	Rail	Tot.	Road	Rail	Tot.		Components?
D4	71	62	72	64	62	65	AC	YES
D5	69	69	72	62	67	70	AC	YES
D6	75	69	76	68	67	70	AC	YES
D7	72	61	72	65	60	63	AC	YES
D8	73	60	73	66	59	62	AC	YES
F1	74	61	75	68	60	63	AC	YES
F2	73	60	73	66	60	63	AC	YES
F3	67	52	67	60	52	55	AC	YES

Outdoor living areas were not identified on the master plan architectural plans. Station Square, Boulevard Square and the park will be publicly accessible areas. As per MECP, these are not considered outdoor living areas for the purposes of noise assessments. Thus, an outdoor living area noise assessment was not completed at this time.

However, once more detailed plans become available, an outdoor living area noise assessment is likely required for any condominium outdoor amenities, or terraces and balconies exceeding 4 metres in depth.

5.1.1 Indoor Noise Control Measures

The Acoustical Insulation Factor (AIF) and its calculation were developed by the National Research Council (NRC) [19]. The AIF is based on the difference between the outside predicted L_{eq} and the required indoor L_{eq} , plus factors to account for the number of room components (e.g., windows, doors, walls). Once calculated, the AIF is converted to minimum required STC ratings for walls and windows, based window-to-floor or wall-to-floor ratios, based on conversion factors developed by Canada Mortgage and Housing Corporation (CMHC) [20] [21] . It should be noted that the STC values below are preliminary, as they depend on details such as window-to-floor area ratios, wall-to-floor area ratios, room layout (e.g. corner room), fixed or operable windows, directionality of windows, etc. Thus, the following assumptions have been made based on experience from other projects.

- Window-to-floor area ratios of 80 percent;
- Wall-to-floor area ratio of 100 percent;
- Operable windows; and
- Corner rooms are a special case; an increase of approximately three STC rating points may be required for rooms for which noise enters the room from multiple directions.

It is important to note that the term "windows" used below includes balcony doors. Consequently, all window glass within balcony doors must be designed according to the STC requirements for the windows stated below.

When detailed floor plans are complete, a comprehensive window-to-floor area assessment of the different model suites can be undertaken to optimize the window selection for the development and possibly reduce STC requirements listed below. Further, TTC streetcar wheel squeal has significant impacts to required STC where the loop meets Lake Shore Blvd. West. Once the streetcar loop schedule is determined, STC requirements could be further optimized.

Table 5-2 summarizes the minimum required STC values for different buildings and façades within the proposed development. Detailed calculations are included in Appendix C. For locations not listed below, Ontario Building Code standards will be adequate to meet the remaining window STC requirements, as well as all exterior wall STC requirements for the development

Lagation	Representative Receptor	Window STC Wind	Wall STC Required	
Location		Living Areas	Sleeping Quarters	
Units in: Block 2-1 facing SW and NE, Block C-1 facing SW and NE.	A1	32	33	35
Units in Block 2-1 facing NW.	A2	32	32	34
Units in: Block E-2 facing SSW and ESE, Block A4-1 facing NNE and ESE , in Block B2-1 facing NNE and ESE.	A3	44	47	49
Units in: Block A1-1 facing the SE	A5	31	34	36
Units in: Block 2-2 facing SE, units in Block E-1 facing ESE	B2	30	33	35
Units in: Block C-1 facing NW.	C2	33	34	36
Units in: Block C-2 facing the SE and NE, in Block A2- 2 facing S, units in Block A1- 2 facing S, units in Block A1- 1 facing SSW, units in Block B1-2 facing NNE	C3	29	32	34
Units in: Block D1-1 facing WSW, units in Block D2-1 facing NE.	D1	37	38	40
Units in: Block D1-1 facing NNW.	D2	38	38	40
Units in: Block D1-1 facing ENE, in Block D2-1 facing SSW, in Block D3-3 facing SSW	D3	34	34	36
Units in: Block D2-1 facing NW, in Block D3-1 facing NNW, in Block D3-2 facing NNW.	D4	37	38	40

Table 5-2: Window and Wall STC Requirements

Location	Representative Receptor	Window STC Wind	Wall STC Required	
Location		Living Areas	Sleeping Quarters	
School windows facing NNW	D4	37	N/A	39
School façade facing WSW	D5	39	N/A	41
Units in: Block D3-1 facing WSW and ENE, in Block D3- 2 facing WSW and ENE.	D6	43	43	45
Units in: Block D3-3 facing NW.	D7	37	35	39
Units in Block D3-3 facing NNW, in Block F-2 facing NNE, in Block E-1 facing NNE	D8	39	35	41
Units in Block F-1 facing NNE	F1	39	35	41
Units in Block F-1 Facing WNW, in Block F-2 facing WNW	F2	39	35	41
Units in Block F-1 facing SSW	F3	31	27	33

NPC-300 requires brick veneer or acoustical equivalent construction for exterior walls within 100 metres from the rail tracks, if sound levels are predicted to exceed 60 dBA. Thus, in addition to the wall STC requirements above, brick veneer or acoustical equivalent exterior walls are required for the following exterior walls. This only applies to residential uses, unless otherwise stated:

- Exterior walls facing WSW, NNW and ENE in Block D1-1;
- Exterior walls facing NW, SSW and NE in Block D2-1;
- Exterior walls facing NNW, WSW and ENE in Block D3-1;
- Exterior walls facing NNW, WSW and ENE in Block D3-1; and
- School exterior walls facing NNW and WSW.

5.1.2 Warning Clauses

The following warning clauses are to be included in offers of purchase or sale, or tenancy agreements, to formally notify future occupants of potential noise impacts. This is a requirement from MECP, Metrolinx and CN. Table 5-3 summarizes the required warning clauses within the development:

Table 5-3: Warning Clauses

Warning Clause	Suggested Wording
Type 'D'	"This dwelling unit has been supplied with a central air conditioning system which will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the Municipality and the Ministry of the Environment, Conservation and Parks."

Warning Clause	Suggested Wording
Metrolinx	"Purchasers/occupants are advised that Metrolinx (formerly GO Transit) or its affiliated companies has or have a railway right-of-way within 300 m from this dwelling unit. There may be alterations to or expansions of the railway facilities of such right-of-way in the future, including the possibility that Canadian Pacific Railway (CPR) or its affiliated railway companies as aforesaid, or their assigns or successors may expand their business operations. Such expansion may affect the living and business environment of the residents, tenants and their visitors, employees, customers and patients in the vicinity, notwithstanding the inclusion of any noise and vibration attenuating features in the design of the development. Metrolinx, its affiliated railway companies and their successors and assigns will not be responsible or any complaints or claims arising from use of such facilities and/or operations on, over or under the aforesaid right of-way."
CN	Purchasers/occupants are advised that Canadian National Railway (CNR) or its affiliated railway companies has or have a railway right-of- way within 300 m from this dwelling unit. There may be alterations to or expansions of the railway facilities of such right-of-way in the future, including the possibility that CPR or its affiliated railway companies as aforesaid, or their assigns or successors may expand their business operations. Such expansion may affect the living and business environment of the residents, tenants and their visitors, employees, customers and patients in the vicinity, notwithstanding the inclusion of any noise and vibration attenuating features in the design of the development. CNR, its affiliated railway companies and their successors and assigns will not be responsible or any complaints or claims arising from use of such facilities and/or operations on, over or under the aforesaid right of-way

5.2 Stationary Noise Findings

Table 5-4 summarizes the predicted stationary sound levels. As can be seen, all sensitive receptors will meet the applicable criteria. Thus, noise control measures to mitigate stationary noise are not required.

Delist of	Daytime 07:00 to 19:00		Evening 19:00 to 23:00		Nighttime 23:00 to 07:00		Everade
Reception	Criteria	Stationary Noise Leq (1h) dBA	Criteria	Stationary Noise Leq (1h) dBA	Criteria	Stationary Noise Leq (1h) dBA	Exceeds Criteria?
D1	68	47	50	47	59	47	No
D2	68	46	50	46	59	46	No
D3	66	44	50	44	57	44	No
D4	69	47	50	47	60	47	No

 Table 5-4: Applicable Stationary Noise Sound Level Criteria

	Daytime 07:00 to 19:00		Evening 23	g 19:00 to 3:00	Nighttime 23:00 to 07:00		_
Point of Reception	Criteria	Stationary Noise Leq (1h) dBA	Criteria	Stationary Noise Leq (1h) dBA	Criteria	Stationary Noise Leq (1h) dBA	Exceeds Criteria?
D5	64	48	50	48	55	48	No
D6	72	49	50	49	64	49	No
D7	69	45	50	45	60	45	No
D8	70	44	50	44	61	44	No
F1	71	43	50	43	60	43	No
F2	70	44	50	44	60	44	No

6. Vibration Analysis Findings

Table 6-1 summarizes the predicted vibration levels at the identified vibration receptors.

Receiver	Vibration Source	Predicted Vibration Level (mm/s RMS)	Limit (mm/sec RMS)	Exceeds Limit?
	Metrolinx Corridor	0.13	0.14	No
V1	TTC Streetcar Loop	0.23	0.14	Yes
V2	TTC Streetcar Loop	0.05	0.14	No
V3	TTC Streetcar Loop	0.02	0.14	No
V4	TTC Streetcar Loop	0.04	0.14	No

Table 6-1: Predicted Vibration Levels

As can be seen, vibration levels at receptor V1 are expected to exceed the applicable limit due to TTC streetcar pass-bys. However, it is noted that this assessment is based on the conservative assumption that the streetcars will be travelling at 30 km/h through Station Square, and along the boarding and unloading platforms northwest, northeast and east of Block D2-1 and D2-2. Streetcars are expected to be travelling slower in this area; thus it is possible that mitigation measures are not required.

A sensitivity analysis was undertaken to investigate the impact of TTC streetcars in vicinity of V1. Further, possible mitigation measures were explored to lower vibration levels to compliant levels. This is summarized in Table 6-2.

Receptor	Condition	Predicted Vibration Level (mm/s RMS)	Limit (mm/sec RMS)	Exceeds Limit?
V1	Streetcar travels at 15 km/h	0.12	0.14	No
V1	Introduce resilient trackwork	0.13	0.14	No

Table 6-2: Vibration Sensitivity Analysis at Receptor V1

Discussions should be held with the TTC to determine operating speeds in vicinity of V1. This assessment confirms that streetcars traveling at 15 km/h near V1 will not result in vibration exceedances.

In the event that operating speeds near V1 are 30 km/h, vibration mitigation will be required under the form of rubber boot vibration isolation. Please see Appendix D for a sample drawing illustrating vibration isolation.

6.1 Ground-borne Noise

As vibration propagates through the ground and then the ceiling/floor and walls of a structure, light partitions (e.g. plaster slab) could vibrate and thus generate noise. This is referred to as ground-borne noise. There are no requirements related to maximum indoor ground-borne noise levels. However, the FTA recommends a maximum sound level of 35 dBA. This corresponds to the NPC-300 indoor air-borne sound level limit for sleeping quarters at night exposed to rail noise – see Table 3-4.

Should the team wish to achieve this objective indoor sound level at sensitive uses represented by V1, a floor to floor vibration attenuation analysis should completed and incorporated into the vibration general analysis since all residential dwellings are anticipated to be at higher elevations. The initial analysis conservatively assumes there is no floor to floor attenuation (see Table 3-4). If further attenuation is required, the application of floating slabs at track locations with special trackwork should be evaluated, assuming a streetcar speed of 30 km/h in vicinity of V1.

It possible to mitigate indoor ground-borne noise with resilient trackwork at special trackwork locations, if it is determined streetcars will operate at a maximum speed of 10 km/h.

7. Implementation Procedures

All relevant builder's plans for the dwelling units requiring noise and vibration control measures should be certified by an Acoustical Consultant as being in conformance with the recommendations of the approved Noise Impact and Vibration Study. The acoustic certifications should be based on the final building siting, final grading, final architectural design and required noise control measures.

Prior to final inspection and release for occupancy, these dwellings should also be inspected and certified as being in compliance with the certified builder's plans and the recommendations of the approved Noise Impact Study.

8. Conclusions and Recommendations

Based on this assessment, the following conclusions are drawn:

- Transportation noise modelling was completed, based on future traffic vehicular traffic volumes for major roadways in the area, on future train volumes along the Lake Shore West rail corridor, and streetcar volumes along Lake Shore Boulevard West and the proposed internal TTC streetcar loop. On this basis, it is concluded that noise control measures will be required within the proposed development to mitigate transportation noise.
 - The required windows and wall STC ratings to mitigate indoor sound levels to MECP requirements are listed in Table 5-2. It is noted that optimization of window and wall STC ratings can be achieved once detailed unit floor plans become available. Further, TTC streetcar wheel squeal has significant impacts to required STC where the loop meets Lake Shore Blvd. West. Once the streetcar loop schedule is determined, STC requirements could be further optimized.
 - Furthermore, brick veneer or acoustical equivalent construction for exterior walls within 100 metres from the rail tracks will be required at select exterior façades. For further details, refer to Section 5.1.1.
 - Air conditioning, or provisions for the installation of air conditioning, will be required for all units within the proposed development. However, it is expected that an air conditioning system will be installed in all units within the proposed development, enabling residents to close windows should exterior noise levels increase.
 - Warning clauses are to be included in offers of purchase or sale, or tenancy agreements, to formally notify future occupants of potential noise impacts. Refer to Table 5-3 for further details.
- Stationary noise modelling was completed, accounting for noise emanating from the future Park Lawn GO station PA speaker system and HVAC rooftop units, as well as truck noise from the Ontario Food Terminal. On this basis, it is concluded that noise control measures will not be required within the proposed development to mitigate stationary noise.
- However, this assessment is deemed preliminary, as the mechanical system of the proposed buildings has not been designed. Typical stationary noise sources in residential developments include HVAC equipment, parking garage ventilation exhaust shafts and auxiliary generators. Once these details become available, the findings of this study should be reviewed, as the development could have a noise impact on itself.
- Vibration levels were predicted from train pass-bys along the Lake Shore West rail corridor, and TTC streetcar pass-bys along. Vibration limits will be exceeded in vicinity of the boarding/loading platforms by Block D2-2 due to TTC streetcar pass-bys.

- At this location, streetcar speeds were conservatively assumed to be 30 km/h. However, it is likely that TTC streetcars will travel at slower speeds. Based on a sensitivity analysis, vibration levels will become compliant at speeds of 15 km/h or lower. Thus, discussions should be held with the TTC to determine operating speeds of streetcars in this area.
- If it is found that TTC streetcars will travel faster than 15 km/h, vibration mitigation will be required such as embedded rail rubber boot isolators at special track locations.
- Although not required, a combination of resilient track work and reduced TTC streetcar speeds near Block D2-2 can achieve FTA recommended indoor groundborne noise levels of 35 dBA. A detailed floor to floor vibration attenuation analysis can be further completed to confirm adequate multi-story vibration attenuation. Floating slabs can also meet this objective sound level.

9. References

- [1] US Federal Transit Administration, "Transit Noise and Vibration Impact Assessment," 2018.
- [2] US Federal Highway Administration, "Traffic Noise Model 2.5".
- [3] International Organization for Standardization, ISO 9613-2: Acoustics Attenuation of Sound During Propagation Outdoors Part 2: General Method of Calculation, Geneva, Switzerland, 1996.
- [4] Ontario Ministry of the Environment, "NPC-300 Environmental Noise Guideline," 2013.
- [5] Ornament, Ontario Road Noise Analysis Method for Environment and Transportation, Technical Document, Ontario Ministry of the Environment, 1989.
- [6] STEAM, Sound from Trains Environmental Analysis Method. July 1990. Ontario Ministry of the Environment.
- [7] RWDI Inc., "GO Rail Network Electrification TPAP Noise/Vibration Modelling Report Lake Shore West Corridor," 2017.
- [8] Novus Environmental "Noise & Vibration Study Proposed Grand Park Village Development Toronto, ON", Novus Reference No. 16-0033, Version No. 2 (Final), July 4, 2016
- [9] Valcoustics Canada Ltd., "Environmental Noise Feasibility Study 251 Manitoba Street Proposed Residential Development", Valcoustics Reference 117-0481, February 2018.
- [10] Aercoustics Engineering Ltd., "Queen St E & Leslie St Noise Analysis", August 2017.
- [11]J.E. Coulter Associates Limited, Noise and Vibration Impact Assessment Proposed Eglinton Crosstown Light Rail Transit Toronto Transit Commission, February 2010
- [12]BA Group, "2150-2194 Lake Shore Boulevard West & 23 Park Lawn Road Urban Transportation Considerations Report," 2019.
- [13] City of Toronto Transportation Services Division, "Traffic Calming Guide for Toronto," 2016.
- [14] Canadian National Railways, "Principal Main Line Requirements".
- [15] The Federation of Canadian Municipalities and the Railway Association of Canada, "Guidelines for New Development in Proximity to Rail Operations," 2013.
- [16] Metrolinx, "Environmental Guide for Noise and Vibration Impact Assessment," 2019.
- [17]MOEE/TTC, "Protocol for Noise and Vibration Assessment for the Proposed Waterfront West Light Rail Transit Line," 1993.
- [18]Ontario Ministry of the Environment (MOECC), STAMSON v5.04: Road, Rail and Rapid Transit Noise Prediction Model, 1996.
- [19] National Research Council of Canada, "Acoustic Insulation Factor: A Rating for the Insulation of Buildings Against Outdoor Noise", June 1980.

- [20] Canadian Mortgage and Housing Corporation, "New Housing and Airport Noise". 1981
- [21]Canadian Mortgage and Housing Corporation, "Road and Rail Noise: Effects on Housing". 1981

Appendix A

ORNAMENT/STEAM Comparison with FTA/TNM

Below are the levels for a sample road and rail segment based on CadnaA (FTA + TNM2.5 algorithms) and STAMSON V5.0 (ORNAMENT and STEAM algorithms). There is a difference of 2 dB between the levels calculated using the CadnaA and STAMSON methods for road and rail traffic noise prediction.

FTA+TNM2.5

Rail Inputs

Railway (USA)		×
Name:	List of Trains: (local) ~	OK
■ ID:	Train Class	Cancel
Emission: Leq50ft (dB)	Type Number of Trains v Lw,i' (dBA) Day Evening Night (km/h) Day Night train 50 0 0 100 65.9 -81.0	<>
Train Classes and Penalties		Geometry
Type of Track:		Help
Dfb (dB): 0.0		
0		
-		Vmax (km/h):
	< >	0

Roadway Inputs

Results

Name	Leve	Level Lr		. Value]	Land U	se	Heig	ght	Coordinates			
	Day	Ln	Day	Ln	Type	Auto	Noise			Х	Y	Ζ	
							Туре						
	(dBA)	(dBA)	(dBA)	(dBA)				(m)		(m)	(m)	(m)	
Receiver	68.2	-69.3	0.0	0.0		X	Total	1.50	r	2375.80	258.45	1.50	

The daytime level using the TNM/FTA calculation methods is 68 dBA.

STAMSON V5.0 ORNAMENT/STEAM Noise Prediction Models

STAMSON 5.0 MINISTRY OF ENV	NORMAL F IRONMENT AND	REPORT D ENERGY	Da / NOISI	ate: 28- E ASSESS	04-2020 MENT	21:49:	:46
Filename: valid Description: Con	ate.te mparison of	Time CadnaA a	Perioo nd Star	d: 24 ho nson	urs		
Rail data, segm	ent # 1: Sam	nple Rail					
Train Type	! Trains !	! Sp !(km	eed !# /h) !/!	loc !# Frain!/T	Cars! E rain! t	ng !Co ype !we	ont eld
1.	! 50.0/0.	0 ! 10	0.0 !	1.0 ! 1	2.0 !Di	esel! Y	Yes
Data for Segmen	t # 1: Sampl	e Rail					
Angle1 Angle2 Wood depth No of house row. Surface Receiver source Receiver height Topography No Whistle Reference angle	s : distance :	-90.00 0 2 100.00 1.50 1	deg S m m	90.00 de (No wood (Absorpt (Flat/ge	g s.) ive gro ntle sl	und sur ope; no	rface) D barrier)
Results segment	# 1: Sample	e Rail					
LOCOMOTIVE (0.0 Angle1 Angle2	0 + 55.60 + Alpha RefLec	0.00) = 4 D.Adj	55.60 d F.Adj	dBA W.Adj	H.Adj	B.Adj	SubLeq
-90 90	0.58 69.99	9 -13.06	-1.33	0.00	0.00	0.00	55.60
WHEEL (0.00 + 4 Angle1 Angle2	7.50 + 0.00) Alpha RefLec	= 47.50 I D.Adj	dBA F.Adj	-	H.Adj	B.Adj	SubLeq
-90 90	0.66 62.63	3 -13.68	-1.46	0.00	0.00	0.00	47.50

Segment Leg : 56.23 dBA Total Leg All Segments: 56.23 dBA Page 2 Road data, segment # 1: Sample Road _____ Car traffic volume : 47500 veh/TimePeriod * Medium truck volume : 1500 veh/TimePeriod * Heavy truck volume : 1000 veh/TimePeriod * Posted speed limit : 60 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) Data for Segment # 1: Sample Road _____ Angle1Angle2: -90.00 deg90.00 degWood depth: 0(No woods) (No woods.) 0 No of house rows : Surface 2 (Reflective ground surface) : Receiver source distance : 50.00 $\rm m$ Receiver height : 1.50 m Topography 1 (Flat/gentle slope; no barrier) : 0.00 Reference angle : Results segment # 1: Sample Road -----Source height = 1.19 mROAD (0.00 + 65.97 + 0.00) = 65.97 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _____ -90 90 0.00 71.20 0.00 -5.23 0.00 0.00 0.00 0.00 65.97 _____ Segment Leq : 65.97 dBA Total Leq All Segments: 65.97 dBA TOTAL Leq FROM ALL SOURCES: 66.41

The daytime level using STAMSON V5.0 is 66 dBA.

Appendix B

Traffic Volumes

Rev. A Page 33

ΗΔΤCΗ

2150 Lake Shore Boulevard West Noise & Vibration Impact Assessment - May 15, 2020

Hi All,

Please see below for a summary of the volumes as requested. I've also attached the various inputs, analysis and data that went into collating this, in case you need further details. Please note that in the absence of data showing exactly what was requested, a number of assumptions had to be made in an effort to best represent what you are looking for. Unfortunately we don't have any heavy vehicle data for the Gardiner Expressmay. As previously mentioned by Alun, we also are unable to derive AADT volumes with the data we have available. Hopefully the daily volumes can provide a reasonable representation of this.

We are not proposing to change any speed limits as part of the proposal.

Please let me know if you have any questions or require anything further.

Regards,

Luke

Dead	Costion		Daily			Day (7am-11pm)		Night (11pm-7am)				
KUdu	Section	Total Volume	Medium Vehicle %	Heavy Vehicle %	Total Volume	I Volume Medium Vehicle % Heavy Vehicle % Total Volume Medium V 29080 1% 2% 3230 35	Medium Vehicle %	Heavy Vehicle %				
Park Lawn Rd	Immediately North of Gardiner Expy WB On Ramp	32310	1%	2%	29080	1%	2%	3230	3%	2%		
Park Lawn Rd	Immediately South of Gardiner Expy EB Off Ramp	29385	0%	1%	26445	0%	1%	2940	0%	1%		
Park Lawn Rd	Immediately North of Lake Shore Blvd W	17395	0%	1%	15655	0%	1%	1740	0%	1%		
Lake Shore Blvd W	Immediately West of Park Lawn Rd	29145	1%	1%	26230	1%	1%	2915	1%	1%		
Lake Shore Blvd W	Immediately East of Park Lawn Rd	25820	1%	1%	23240	1%	1%	2580	0%	1%		
Lake Shore Blvd W	Immediately East of Brookers Ln	11030	0%	2%	9925	0%	2%	1105	0%	1%		
The Queensway	Immediately East of Park Lawn Rd	40035	1%	1%	36030	1%	1%	4005	3%	1%		
Gardiner Expy WB On Ramp	From Park Lawn Rd	15535	3%	2%	13980	3%	2%	1555	8%	3%		
Gardiner Expy EB Off Ramp	To Park Lawn Rd	17250	1%	1%	15525	1%	1%	1725	2%	2%		
Gardiner Expy Ramps	To/From Relief Rd (Lake Shore)	18000	0%	1%	16200	0%	1%	1800	0%	0%		
Gardiner Expy	Between Park Lawn Rd and Humber River	166790			141770			25020				

Luke J. Richardson Transportation Analyst

BA Consulting Group Ltd.

 KITCHENER
 TORONTO

 100 - 51 Breithaupt St.
 300 - 45 St. Clair Ave. W.

 Kitchener, ON N2H 5G5
 Toronto, ON M4V 1K9

 TEL
 416 861 7110 x162

 EMAIL
 richardson@bagroup.com

Appendix C

Building Envelope Noise Reduction Calculation

ΗΔΤCΗ

2150 Lake Shore Boulevard West Noise & Vibration Impact Assessment - May 15, 2020

Representative Receptor	Applies to Overall Le		Road Leq	Rail Leq	Requires Component Design?	Aircraft (NEF)	Number of Room Components, C	AIF Required				Window/Floor Area Ratio (%)	Wall/Floor Area Ratio (%)	Window STC	Wall STC	Vertision Pertimets
								Road	Rail	Air	Overall					
	Units in: Block 2-1 facing SW and NE, Block C-1 facing															
A1	SW and NE.	65	65	58	NO		2	25	23	0	27	80	100	32	34	FA
A2	Units in: Block 2-1 facing NNW.	66	66	58	YES		2	26	23	0	28	80	100	32	34	AC
	Units in: Block E-2 facing SSW and ESE, Block A4-1															
A3	facing NNE and ESE , in Block B2-1 facing NNE and	75	60	74	YES		2	20	39	0	39	80	100	44	46	AC
A4		63	63	52	NO		2	23	17	0	24	80	100	28	30	FA
A5	Units in: Block A1-1 facing the SE	62	55	61	YES		2	15	26	0	26	80	100	31	33	FA
B1		56	55	50	NO		2	15	15	0	18	80	100	22	24	FA
	Units in: Block 2-2 facing SE, units in Block E-1 facing															
B2	ESE	62	59	59	NO		2	19	24	0	25	80	100	30	32	FA
B3		59	58	54	NO		2	18	19	0	22	80	100	26	28	FA
C1		63	62	53	NO		2	22	18	0	23	80	100	28	30	FA
C2	Units in: Block C-1 facing NW.	67	65	61	YES		2	25	26	0	29	80	100	33	35	AC
C3	Units in: Block C-2 facing the SE and NE, in Block A2-2	60	55	58	NO		2	15	23	0	24	80	100	29	31	FA
	Units in: Block D1-1 facing WSW, units in Block D2-1															
D1	facing NE.	71	70	64	YES		2	30	29	0	33	80	100	37	39	AC
D2	Units in: Block D1-1 facing NNW.	71	70	64	YES		2	30	29	0	33	80	100	38	40	AC
	Units in: Block D1-1 facing ENE, in Block D2-1 facing															
D3	SSW, in Block D3-3 facing SSW	69	68	60	YES		2	28	25	0	30	80	100	34	36	AC
	Units in: Block D2-1 facing NW, in Block D3-1 facing															
	NNW, in Block D3-2 facing NNW. School windows															
D4	facing NNW.	72	71	62	YES		2	31	27	0	32	80	100	37	39	AC
D5	School façade facing WSW	72	69	69	YES		2	29	34	0	35	80	100	39	41	AC
	Units in: Block D3-1 facing WSW and ENE, in Block D3-															
D6	2 facing WSW and ENE.	76	75	69	YES		2	35	34	0	38	80	100	43	45	AC
D7	Units in: Block D3-3 facing NW.	72	72	61	YES		2	32	26	0	33	80	100	37	39	AC
	Units in Block D3-3 facing NNW, in Block F-2 facing															
D8	NNE, in Block E-1 facing NNE	73	73	60	YES		2	33	25	0	34	80	100	39	41	AC
F1	Units in Block F-1 facing NNE	75	74	61	YES		2	34	26	0	35	80	100	39	41	AC
	Units in Block F-1 Facing WNW, in Block F-2 facing															
F2	WNW	73	73	60	YES		2	33	25	0	34	80	100	39	41	AC
F3	Units in Block F-1 facing SSW	67	67	52	YES		2	27	17	0	27	80	100	31	33	AC

Daytime Building Envelope Noise Reduction Calculation

ΗΔΤCΗ

2150 Lake Shore Boulevard West Noise & Vibration Impact Assessment - May 15, 2020

Representati∨e Receptor	re Applies to		Road Leq	Rail Leq	Requires Component Design?	Aircraft (NEF)	Number of Room Components, C	AIF Required			Window/Floor Area Ratio (%) (%)		Window STC	Wall STC	Velliator renet	
					-			Road	Rail	Air	Overall					×.
	Units in: Block 2-1 facing SW and NE, Block C-1 facing															
A1	SW and NE.	60	57	57	YES		2	22	27	0	28	80	100	33	35	FA
A2	Units in: Block 2-1 facing NNW.	60	57	57	YES		2	22	27	0	28	80	100	32	34	FA
	Units in: Block E-2 facing SSW and ESE, Block A4-1															
A3	facing NNE and ESE , in Block B2-1 facing NNE and ESE.	74	71	71	YES		2	36	41	0	42	80	100	47	49	AC
A4		54	51	51	NO		2	16	21	0	22	80	100	26	28	FA
A5	Units in: Block A1-1 facing the SE	61	58	58	YES		2	23	28	0	29	80	100	34	36	AC
B1		52	49	49	NO		2	14	19	0	20	80	100	24	26	FA
	Units in: Block 2-2 facing SE, units in Block E-1 facing															
B2	ESE	60	57	57	YES		2	22	27	0	28	80	100	33	35	FA
B3		55	52	52	NO		2	17	22	0	23	80	100	27	29	FA
C1		56	53	53	NO		2	18	23	0	24	80	100	29	31	FA
C2	Units in: Block C-1 facing NW.	62	59	59	YES		2	24	29	0	30	80	100	34	36	AC
	Units in: Block C-2 facing the SE and NE, in Block A2-2															
	facing S, units in Block A1-2 facing S, units in Block A1-															
C3	1 facing SSW, units in Block B1-2 facing NNE	59	56	56	YES		2	21	26	0	27	80	100	32	34	FA
	Units in: Block D1-1 facing WSW, units in Block D2-1															
D1	facing NE.	66	63	63	YES		2	28	33	0	34	80	100	38	40	AC
D2	Units in: Block D1-1 facing NNW.	65	62	62	YES		2	27	32	0	33	80	100	38	40	AC
	Units in: Block D1-1 facing ENE, in Block D2-1 facing															
D3	SSW, in Block D3-3 facing SSW	62	59	59	YES		2	24	29	0	30	80	100	34	36	AC
	Units in: Block D2-1 facing NW, in Block D3-1 facing															
	NNW, in Block D3-2 facing NNW. School windows															
D4	facing NNW.	65	62	62	YES		2	27	32	0	33	80	100	38	40	AC
D5	School façade facing WSW	70	67	67	YES		2	32	37	0	38	80	100	42	44	AC
	Units in: Block D3-1 facing WSW and ENE, in Block D3-															
D6	2 facing WSW and ENE.	70	67	67	YES		2	32	37	0	38	80	100	43	45	AC
D7	Units in: Block D3-3 facing NW.	63	60	60	YES		2	25	30	0	31	80	100	35	37	AC
	Units in Block D3-3 facing NNW, in Block F-2 facing															
D8	NNE, in Block E-1 facing NNE	62	59	59	YES		2	24	29	0	30	80	100	35	37	AC
F1	Units in Block F-1 facing NNE	63	60	60	YES		2	25	30	0	31	80	100	35	37	AC
	Units in Block F-1 Facing WNW, in Block F-2 facing															
F2	WNW	63	60	60	YES		2	25	30	0	31	80	100	36	38	AC
F3	Units in Block F-1 facing SSW	55	52	52	NO		2	17	22	0	23	80	100	27	29	FA

Nighttime Building Envelope Noise Reduction Calculation

Appendix D

Embedded Track Vibration Isolators

ΗΔΤCΗ

2150 Lake Shore Boulevard West Noise & Vibration Impact Assessment - May 15, 2020

